Задание 2. Сейсмическая опасность площадок строительства

При отсутствии карты СМЗ и результатов сейсмического микрозонирования допускается упрощенное определение сейсмичности площадки строительства:

а) в баллах - по Таблице 6.2, учитывая сейсмичности зоны строительства, указанные на картах ОСЗ-2₄₇₅, ОСЗ-2₂₄₇₅ или в Приложении Б, и тип грунтовых условий площадки строительства

Таблица 6.2 – Определение сейсмичности площадки строительства в баллах

Типы грунтовых	Сейсмичность площадки строительства при сейсмичности зоны (в баллах) по картам ОСЗ-2 ₄₇₅ и ОСЗ-2 ₂₄₇₅ или по Приложению Б					
условий	6	7	8	9	10	
ІА и ІБ	6	7	8	9	10	
II	6	7	8	9	10	
III	7	8	9	10	по результатам исследований	

Примечание — При определении сейсмичности площадок строительства, расположенных в горных местностях или на возвышенностях, следует дополнительно учитывать топографические эффекты усиления сейсмических воздействий (см. 6.3.4).

б) в горизонтальных ускорениях - с помощью выражений (6.3) и (6.4):

$$a_{g(475)} = a_{gR(475)} \cdot S(a_{gR(475)}) \cdot S_{T},$$

$$a_{g(2475)} = a_{gR(2475)} \cdot S(a_{gR(2475)}) \cdot S_{T},$$

а_{gR(475)} и а_{gR(2475)} - референтные значения горизонтальных пиковых ускорений на рассматриваемой площадке строительства, определяются по картам **ОСЗ-1**₄₇₅ и **ОСЗ-1**₂₄₇₅ или по Приложению Б; **S**_T - коэффициент, учитывающий топографические эффекты усиления горизонтальных сейсмических воздействий на площадке строительства табл. 6.4

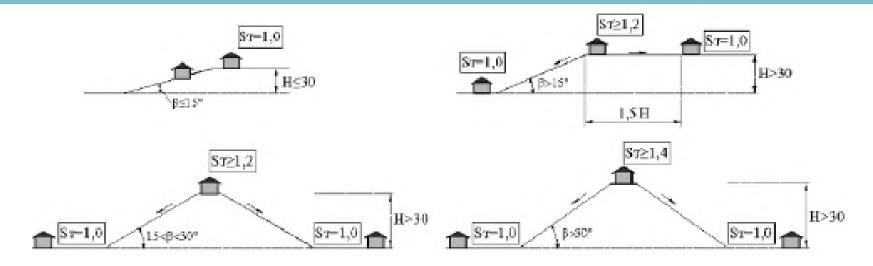


Рисунок 6.1 – К определению значений коэффициентов S_{T}

Таблица 6.4 – Значения коэффициентов S_T

Категория рельефа	Характеристика рельефа	Расположение площадки	S_{T}
1	Плоские поверхности и возвышенности с крутизной склонов менее 15°,	_	1,0
2	Одиночные возвышенности с крутизной склонов более 15°	вблизи верхнего края склона	≥1,2
3	Протяженные возвышенности с шириной гребня существенно меньшей, чем в основании и крутизной склонов от 15° до 30°	вблизи вершины возвышенности	≥1,2
4	Протяженные возвышенности с шириной гребня существенно меньшей, чем в основании и крутизной склона более 30°	вблизи вершины возвышенности	≥1,4

Примечание — Для площадок, расположенных между основанием и вершиной хребтов или склонов, значения коэффициентов усиления $S_{\rm T}$ допускается определять по линейной интерполяции, принимая значение $S_{\rm T}$ в основаниях возвышенностей равным 1.0.

ПРИМЕР

Дано:

- город Талдыкорган;
- категория грунтов ІБ;
- -определение площадки строительства в горизонтальных ускорениях.

$$a_{g(475)} = a_{gr(475)} * S(a_{gr(475)}) * S_T = 0,21*1,2*1 = 0,252$$

$$a_{g(2475)} = a_{gr(2475)} * S(a_{gr(2475)}) * S_T = 0.39 * 1.2 * 1 = 0.530$$

Где:

 $a_{gr(475)} = 0.21 \text{ и } a_{gr(2475)} = 0.39$

S(â_{gr(475)}) = 1,2 и S(a_{gr(2475)}) = 1,2 для категории грунта IБ = ≤1.2 табл. 6.3

 $S_T = 1$ (табл.6.4) при категории рельефа «1».

Так как интенсивность сейсмического воздействия на площадке строительства характеризуется значением расчетного *пикового ускорения а_g* то необходимо большее из двух значений: например Талдыкорган

$$a_{g} = \max \left\{ \frac{a_{g(475)}}{2} \frac{2}{3} \cdot a_{g(2475)} \right\}$$

$$a_{g(475)} = 0.252g$$

$$a_{g(2475)} = \frac{2}{3}a_{g(2475)} = \frac{2}{3}*0.530 = 0.35g$$

Значения коэффициентов $S(a_{{ m gR}(475)})$ и $S(a_{{ m gR}(2475)})$

Тип грунтовых условий по сейсмическим свойствам	Значения коэффициентов $S(a_{gR(475)})$ и $S(a_{gR(2475)})$ в зависимости от величин пиковых ускорений $a_{gR(475)}$ и $a_{gR(2475)}$
IA	1,0
ІБ	$1.0 \le (1.4 - a_{gR}/g) \le 1.2$
II	$1,1 \le (2,0-2,5 \cdot a_{gR}/g) \le 1,6$
III	$1,3 \le (2,5-3,0 \cdot a_{gR}/g) \le 2,4$

	Тип грунтовых условий				
Населенный	IA		III		
пункт	475	2475	475	2475	
	лет	лет	лет	лет	
Айнабулак	0,170g	0,340g	0,338g	0,334g	
Алмалы	0,200g	0,370g	0,380g	0,340g	
Коныролен	0,340g	0,510g	0,503g	0,442g	
Алгабас	0,470g	0,820g	0,610g	0,710g	
Алматы	0,380g	0,680g	0,517g	0,589g	
Байсерке	0,310g	0,540g	0,486g	0,468g	

Расчетную сейсмичность площадки строительства в баллах, при ее определении по картам общего сейсмического зонирования территории Республики Казахстан ОСЗ-2₄₇₅ и ОСЗ-2₂₄₇₅, следует принимать:

- для объектов, отнесенных по функциональному назначению к классам ответственности I, II и III (см. таблицу 7.2), по карте **OC3-2**₄₇₅ и таблице 6.2;
- для объектов, отнесенных по функциональному назначению к классу ответственности IV (см. таблицу 7.2), по карте $OC3-2_{2475}$ и таблице 6.2

Выбор площадок строительства

При выборе площадок строительства не рекомендуется размещать жилые массивы, промышленные (производственные) комплексы или отдельные здания и сооружения на площадках неблагоприятных в сейсмическом отношении (магнитуда, крутизна, склоны, разломы)

В случаи строительства здания на вышеперечисленных площадках необходимо разработка Специальных технических условий